
CE-solver manual

Stanislav Zidek

May 25, 2009

1 Introduction

CE-Solver is a tool for computing Correlated Equilibrium in possibly very
large games. It useses slightly modified method proposed by dr. Hruby (see
http://perchta.fit.vutbr.cz/CE-Solver/1), which is based on elimina-
tion of strictly dominated strategies using G-matrix.

2 Theory

2.1 Correlated equilibrium

Correlated equlilibrium (CE) is a solution concept in game theory that, un-
like for example well known Nash equilibrium, allows some kind of simple
synchronization between players.

It is useful for analyzing real market situations, because the synchroniza-
tion in real world is possible.

In fact, CE is a probability distribution over the set of strategy profiles
of the game.

2.2 G-matrix

G-matrix represents an elegant way to display multiplayer game (even games
with more than two players) in a two dimensional table. It is also well suited
for reduction of game’s state space.

Rows are identified by three numbers: identification of player p and two
different strategies of his (we will call them sfrom and sto). Colums are
identified by strategy profiles of the game. Cells contain the difference

up(sfrom, s−p)− up(sto, s−p),

1

where s−p are strategies played in strategy profile corresponding to the col-
umn of G-matrix and up is utitlity function for player p.

Note Cells in column identified by strategy profile which does not contain
strategy sfrom are empty.

2.3 Reduction

Reduction of the game is quite straightforward once we construct the G-
matrix. If we find a row that contains only negative values, we can eliminate
corresponding strategy sfrom, which means that we can remove

• all rows that contain eliminated strategy and

• all colums with strategy profiles containing eliminated strategy.

After one elimination step it is possible that other strategy becomes domi-
nated (its row contains only negative values), because we remove some colums
that may have contained positive values which prevented its elimination ear-
lier in the process.

As a consequence, the reduction is iterative procedure which can be per-
formed as long as we are able to eliminate at leat one strategy. Eventually
we may end up with single valid profile, after which the computing of CE is
very simple.

2.4 Example

Consider game in table 1. Corresponding G-matrix is in table 2.

D E
A 1, 3 2, 5
B 2, 2 3, 1
C 3, 4 2, 3

Table 1: Example game

As we can see (in table 2), there is one negative row, A→B to be specific.
After elimination of strtegy A, we get G-matrix in table 3.

After the first step of elimination, another strategy (E) can be eliminated,
after which another strategy might be eliminated, and so on. . .

2

AD BD CD AE BE CE
A→B −1 -1
B→A 1 1
B→C −1 1
C→B 1 −1
A→C −2 0
C→A 2 0
D→E −2 1 1
E→D 2 −1 −1

Table 2: G-matrix corresponding to the game in 1 (we omit player identifi-
cation – it is not neccessary since they both have distinct set of strategies).

BD CD BE CE
B→C −1 1
C→B 1 −1
D→E 1 1
E→D −1 −1

Table 3: G-matrix after one step of elimination

2.5 Computing CE as LP problem

If we are able to reduce whole game to single strategy profile, then the so-
lution is easy. However, it might not be the case, so we need some tool to
compute CE in any game.

The task of computing CE may be turned into solving LP problem. Its
structure is very similar to structure of G-matrix. LP variables correspond
to G-matrix columns (strategy profiles) and LP constraints correspond to
G-matrix rows. One additional constraint must be added to make sum of
probabilities equal to one (it assures unboundness of the solution).

Last issue remains: what are the coefficients of the objective function.
There is no general rule, but two most logical and reasonably complex ways
are as follows:

1. all coefficients are equal to one or

2. the coefficient of LP variable is the sum of payoffs of all players when
playing associated strategy profile, more formally:

cs =
∑
i∈Q

ui(s),

3

where s is the associated strategy profile, Q is set of players and ui is
payoff function of player i.

We decided to use the second approach, because it is able to reflect the
prefference of equilibrium with higher payoffs for all players.

3 Implementation

CE-solver is a library with simple command line utility written in C++.
It uses OpenMP to employ parallelism. LP problems are solved by GLPK
library, but generally any tool can be used if you implement a simple interface.

3.1 Main ideas

3.1.1 CE-solver input

We tried to keep the interface as simple as possible to provide freedom to
potential modellers. Creating game model is very easy in terms of interface
with CE-solver (however complex it can be internally). You just have to
create class inherited from Game and implement three methods. Details are
described in part 4.

3.1.2 Storage of G-matrix

Since G-matrix is very huge, we decided to store just information that is
essential. That is, all we need to know is the position in every row where
we had to finish traversing, so after some eliminations we are able to skip
forbidden profiles and continue traversing.

3.1.3 Payoff cache

Computing payoffs is computationally hardest part of real-world models.
Because of that, we created so called payoff cache, which is used to store
computed payoffs. When they are needed again, which might happen several
times during solving, we do not have to compute them and just read them
from this cache (see 3.2.4).

3.1.4 Parallelization

Parallelism is a natural choice to speed up computing. Because G-matrix
reduction can be quite easily done in parallel, we designed the whole library
with parallelism in mind. For this purpose, we chose OpenMP system because

4

it is easy to use and provides good results on parallel architectures with
shared memory.

3.2 Structure

In this part, we are going to describe how does CE-solver work internally.
We will outline what happens when a game is being solved and describe some
importatnt classes. Other classes will described in part 4.

Basic scheme of the library could be seen in class diagram 1.

Figure 1: Class diagram of CE-solver

3.2.1 Solving game

When method solve() of CESolver is invoked, it does the following things:

5

1. Creates GMatrix object.

2. Calls minimize() method of GMatrix.

3. Creates object of CorrelatedLP by invoking method get lp problem()

of GMatrix.

4. Solves LP problem (CorrelatedLP) by using GLPKSolver and stores
the solution.

Because we use GLPK as a ”black-box” component, the main algorithmic
complexity lies in the method minimize of GMatrix, so we are going to
describe this class more thoroughly.

GMatrix can be considered as computational heart of whole CE-solver.
Minimization is done by iterating through G-matrix until no more strategies
can be eliminated. One iteration is done in method iterate, which assigns
G-matrix rows to threads. Every thread then goes through its row (skipping
undefined columns) until it reaches the end (then sfrom can be eliminated)
or encounters nonnegative value.

Important algorithms are presented in figures 2 and 3 using C++/Python
inspired pseudocode.

players = number of players

//for all players

for (unsigned p = 0; p < players; p++):

p_strats = number of strategies of player p

for (unsigned sto = 0; sto < p_strats; sto++):

if (strategy sto of player p is forbidden):

continue

for (unsigned sfrom = 0; sfrom < p_strats; sfrom++):

//now we are in G-matrix row identified by:

// (p: sfrom -> sto)

if (strategy sfrom of player p is forbidden):

continue

if (sfrom != sto):

//check according row

...

Figure 2: Iterating through rows of G-matrix

6

3.2.2 G-matrix positions – GRows

Class GRows is used to store positions in G-matrix rows where traversing had
to stop. Initially, it is empty and when a position for a row is requested and
nothing has been previously stored for this row, it just returns first strategy
profile – (0, . . . , 0).

3.2.3 Eliminated strategies – ForbiddenStrategies

Since we do not want to store explicitly all strategy profiles which have al-
ready been eliminated, we just store eliminated strategies in this particular
class. Internally it contains a vector of boolean values, which is stored effec-
tively.

This class is used every time we need to advance in traversing row from
one profile to another. We have to check that all strategies in next profile
are valid (have not been eliminated). If it is not the case, we must proceed
to nex profile until we reach valid profile or the end of the row.

3.2.4 Cache of computed payoffs – UCache

This is very important class for solving games where payoff computation takes
considerable amount of time. Performed tests show that this amount is about
5–10 µs on computer with 16 processors Intel Xeon X5355 (2,66 GHz).

3.2.5 Correlated LP problem – CorrelatedLP

This class provides some kind of link between minimization of game and
solving LP problem. It is in fact the output of minimization, provided by
G-matrix, and the input of GLPKSolver.

It might be important only in situation when you want to create you own
LP solver, in which case it is its input.

3.2.6 Interface to GLPK – GLPKSolver

GLPKSolver provides an interface for using GLPK to solve LP problem in
CorrelatedLP. It has been designed to make it as simple as possible to
”switch” to another LP solving tool. If you are interested in this way, you
should implement class similar to GLPKSolver with methods.

Generally the interface is so simple that all you have to do is to create
similar constructor and method solve(). For additional details, please see
the source code.

7

4 Usage

4.1 Library interface

The only thing modeller has to do is to create his game model, which must
be inherited from abstract class Game. Then he can create object CEsolver,
that coputes the CE.

4.1.1 Game model – class Game

There are three methods a modeller has to implement. Two of them are
rather simple. The method unsigned players() just returns the number of
players playing the game and method StrategyProfile strategies() re-
turns the number of strategies each player has in object of class StrategyProfile.

Class StrategyProfile This class represents a strategy profile of the
game. The easiest way to use it is probably to call constructor which takes
number of players as an argument and then access the elements using the
operator[]. For performance reasons, it is implementes as static array of
size MAX PLAYERS, which is 16 by default. In case of games with more players,
modeller has to specify appropriate value of this macro at compile time. It
is also possible to specify value lesser than 16, which might make sense if the
modeller wants to save some memory.

The third method is the most complex and also the most important, it
does the actual computation of the payoffs. Its signature is:

UProfile<class T=float> get(StrategyProfile prof)

It takes a strategy profile as an argument and returns corresponding payoffs.

Class UProfile This class is very similar, almost identical to StrategyProfile
in its behaviour. It is usually used to store the payoffs computed for every
player in specific strategy profile.

Note on parallelism Main payload of computation is considered to be
just mentioned method get. CE-solver tries to utilize parallelism in com-
puting payoffs, which means invoking this method in parallel. So it must be
reentrant (along with other two methods, by the way). We try to enforce
this by using the const modifier on all these methods.

8

4.1.2 Computing equilibrium – class CESolver<bool B, class T=float>

Now modeller is in situation that he has just created the model of the game
and wants to compute the CE. The simple way to do that is to construct
CESolver object and call his method solve(). The method get solution()

serves to get the computed solution in std::map<StrategyProfile, double>

and the method get payoffs() returns players’ expected payoffs in case of
playing the CE.

The first template argument (bool B) is of cardinal importance. It says
whether to use the payoff cache or not. Setting it to true has great impact
on performance when computing of the payoffs takes significant time (about
10 µs). However, if it is not the case, then using the cache is useless and the
argument should be set to false.

4.2 Correlated Equilibrium File Solver

CEFS is a simple command line utility that is able to solve games saved in
files.

4.2.1 File formats

There are two file formats accepted by CEFS.

Native file format CEFS’s native file format is very simple. It can be
describe in notation inspired by Extended Backus-Naur Form (EBNF) as:

game = players, ws, strategies list, payoffs;

players = natural number (* number of players*);

strategies list = players * (strategies, ws);

strategies = natural number (* number of strategies *);

payoffs = product of strategies * uprofile;

uprofile = players * (number, ws);

number = integer | real number;

ws = ? one or more white space characters ?;

integer = ? obvious meaning ?;

natural number = ? integer greater than zero ?;

real number = ? real number in standard format ?;

EBNF does not allow to specify number of repetitions by non-constant ex-
pression, but we use it. Since players is a natural number, we use the
notation

strategies list = players * (strategies, ws);

9

to express that (strategies, ws) must be repeated exactly n times, where
n is natural number yielding the value that was covered by nonterminal
players. Informally, this game format represents a serialized table of payoffs,
preceeded by short header containing its size (number of players and their
strategies). Table of payoffs is serialized ”lexicographically”, by which we
mean that payoffs are ordered by strategy profiles as (1, 1), (1, 2), (2, 1),
(2, 2) (last player’s strategy changes most frequently). For example, game in
table 4 is saved as file in figure 4.

D E
A 1, 3 2, 5
B 2, 2 3, 1
C 3, 4 2, 3

Table 4: Game to be saved in file (see figure 4)

Gambit normal form games (.nfg) Another formats supported by CEFS
are two slightly different Gambit (well known free software library for solv-
ing mathematical games) formats for normal form games. They are well
described on Gambit website, so we will not go into them here. Let us just
discourage you from using gambit format. Native format is much more sim-
ple and although Gambit’s format is well specified, almost no game bundled
with it respects it.

4.2.2 Invocation

CEFS can be invoked without any arguments. That means it reads input
game from stdin and does all actions (export and solve reduced game).

If argument -s is used, CEFS only minimizes and solves reduced game,
it does not export it.

Argument -e means that CEFS only minimizes and exports reduced
game. Default behaviour is to export to file reduced.game with mappings
in reduced.map.

You can change the file name of reduced game by specifying argument
-r filename. So instead of exporting to reduced.game and reduced.map

CEFS exports minimized game to filename.game and filename.map.
Help can by obtained using argument -h.

10

4.2.3 Mappings file

To preserve some relation between orginal and reduced game we introduce
so called ”mappings” file. It is created together with file with reduced game
and contains information about correspondence of strategies between both
games.

The header is similar to our native file format, it consists of number of
players followed by number of strategies that were not eliminated for each
player. Then there are lists of indices of strategies in original game that
correspond to strategies in reduced game.

You can see an example in figure 5. It says that 4-player game was reduced
(first row) so that zeroth player has two strategies, first player has just one
remaining strategy, second player has five strategies and three strategies of
fourth were not eliminated (second row). Obviously we are indexing from
zero. Then you can see that two strategies that remained for zeroth player
originally had indices two and four (third row) and so on.

5 Conclusion

CE-solver is powerful library for finding Correlated Equilibium. It is very
simple to use, while carefully designed algorithms and data structures pre-
serve efficiency of computation.

In this manual, we described the theoretical background, implementation
and usage of CE-solver library and CEFS utility. It explains the main ideas
and functionality and contains some useful directions for potential modellers.

11

//checking G-matrix row for player p and strategies sfrom and sto

Queue<StrategyProfile> skipped

end=false, step=false

StrategyProfile prof = rows.get(p, sfrom, sto)

if (!valid_profile(prof, p)): //reached end of the row

make strategy sfrom of player p forbidden

change = true

continue

//main cycle of iterating through G-matrix row

while (!end && difference(prof, player, sfrom, sto, skipped) < 0):

step = true

end = !next_profile(prof, p)

if (step || end):

while (!skipped.empty()):

prof = skipped.front()

skipped.pop()

//now we use the method difference with active waiting

//(payoffs should be already computed)

if (difference(prof, p, sfrom, sto) >= 0):

end = false

break

if (end):

make strategy sfrom of player p forbidden

change = true

continue

if (step):

rows.set(prof, p, sfrom, sto)

Figure 3: Algorithm of traversing G-matrix row – object rows (of class
GRows) stores positions where traversing finished last time, variable change

says whether there have been any change in forbidden strategies since the
beginning of the iteration

2

3 2

1 3 2 5

2 2 3 1

3 4 2 3

Figure 4: Game from table 4 saved in file

12

4

2 1 5 3

2 4

0

2 3 5 11 17

0 1 2

Figure 5: Game from table 4 saved in file

13

