
PSP-Solver User Guide

Martin Hruby	

Faculty of Information Technology	

Brno University of Technology	

Czech republic	

e-mail: hrubym at fit.vutbr.cz	

!

P S P - S O LV E R U S E R G U I D E 	

Introduction	

PSPSolver is a configurable optimizer of Resource-Constrained Project Scheduling Problems
(RCPSP). The program is called PSP-Solver because it accepts tasks from a well-known library of
RCPSP tasks, the PSPlib. However, the PSP-Solver might load any other format following the RCPSP
specification.	

The PSP-Solver users are expected to have a basic knowledge of RCPSP solving techniques and
terminology.	

	

Installation & run	

PSP-Solver can be compiled on Linux/UNIX systems or with a appropriate support of GNU
software (e.g. Cygwin). Compilation requires:	

• GNU C++ 4.2 distribution or higher.	

• Boost devel libraries (thread, base).	

• Open MP.	

Unpack the distribution (or SVN repository) and type “make”. Compilation results with a binary
file called “psp”.	

To run PSP-Solver, type	

> ./psp -u <rcp_file> [-args]	

where:	

• rcp_file is a path to a RCPS problem in the RCP format (see PSPLib for more information).	

• args is a sequence of simple boolean flags (-x) or input value settings (-x value).	

RCPSP Model Specification	

Task definition	

A RCPS problem (task) is given by its:	

• set of jobs J = {j0, j1, j2, ..., jN, jN+1},	

PSP-Solver User Guide

• set of resources R = {r1,r2, ..., rM},	

• capacity of resources C: R ➝ Integer,	

• requested capacity for each job and resource K: J × R ➝ Integer,	

• precedence relation P on J × J, where (i,j)∈ P means that j earliest start must be after i’s end,	

• duration of jobs D: J ➝ Integer; D(j0)=D(jN+1)=0.	

Task solution	

Solution of a given task is a vector S = (S(j0), ..., S(jN+1)), where S(j) is a starting time of a job j. A
solution S is valid if it keeps task’s definition, which is:	

• precedence: forall (i,j) from P: S(j) >= S(i) + D(i),	

• resource constraints: forall t from {0, 1, ..., S(jN+1)}, forall r from R: summary of K(i,k) of jobs
running at the t-moment is not higher than C(k).	

The main goal of all efforts in solving RCPS problems is to find a valid solution, and moreover, to
find a good or event optimal solution in the meaning of some quality of the solution -- which is so
called makespan here. Makespan of a particular solution S is the moment when the last jobs starts/
ends, i.e. S(jN+1).	

For the technical purposes, RCPS optimizer work with certain encodings of solutions. The most
common encoding is called Activity List (AL). AL is an vector of jobs specifying an order of scheduling
the jobs using a Schedule Generation Scheme (SGS).	

As every AL put into a specified SGS determines a particular solution, ALs are usually presented
as the solutions (keeping in mind that under some SGS).	

	

PSP-Solver Program Architecture	

The program loads a given task, creates a specified algorithmic solver, invokes the solver and
prints its results (a solution). At the moment, PSP-Solver contains the following algorithms and solvers:	

• Basic Genetic Algorithm with RT (GARTH) — configurable GA with or without RT support.	

• Experimental Genetic Algorithm (E-GARTH) — highly configurable GA inspired from BGA.	

• Multi-population Genetic Algorithm (MPGA) — alg. runs a user specifed number of GA
optimizers and swap sub-sets of their genes at certain moments.	

• Brute-force Solver — alg. enumerates all ALs.	

• Histogram Scanner — randomly generates genomes, evaluates them an results a histogram of
found makespans.	

!

PSP-Solver User Guide

The GARTH, E-GARTH and MPGA solvers may be configured at each step of their functionality.
GARTH and E-GARTH work generally in the following steps:	

1. Creating an initial population — the population may be fully random or loaded from a given
file.	

2. Evaluation of the initial population and check halting conditions.	

3. For a pre-defined number of generations (transform an old population into a new
population):	

1. Select genomes for their copying into a new population.	

2. Copy selected genomes into the new population.	

3. Select genomes for mutation.	

4. Select genomes for crossover operation.	

5. Proceed the mutation operation and put the resulting genomes to the new population.	

6. Proceed the crossover operation and put the resulting genomes to the new population.	

7. Replace the old population with the new population.	

8. Evaluate the new population.	

9. Check halting conditions.	

4. Export the best found solution. The result is printed on standard output and may be sent to a
PostgreSQL database (if configured).	

!
GARTH and E-GARTH slightly differs in order of the above specified steps. Multi-population GA

(MPGA) instantiates a specified algorithm (GARTH or E-GARTH) such that all instances are fully
independent (they do not share a pseudo-random generator). 	

RT Support	

If RT (Run-time hypothesis) is enabled, the created optimizers manages a special set of statistics
on their past evolution. A single RT statistics is a structure containing:	

• a type of statistics — particular RT-property of two jobs (i, j) describing a sort of their mutual
time constalation,	

• a pair (i,j) of jobs,	

• makespan — so far best makespan of a genome where (i,j) were at the specified mutual time
constalation.	

PSP-Solver User Guide

PSP-Solver contains various types of RT-properties, e.g. PSE (Paralel Starts Equal) meaning that, in
a certain AL (genome), jobs i and j are in PSE time mutual constalation if they start at equal time
moment. A RT-statistics (PSE, (i,j), M) then says that during the past GA evolution, there was not a
genome with (i,j) in PSE mutual constalation having its makespan better than M. Having such a RT-
statistics, the GA may assume a hypothesis that (i,j) in PSE blocks a solution better than M, or better
say there is probably no AL with (i,j) starting in the same moment which would have a makespan
better than M.	

A single RT-statistics is just a hypothesis, not a fact. It helps the BGA (EGA) to spread its evolution
over the whole possible space of all solutions.	

RT-characteristics are being collected on population re-evaluation. Every evaluated genome
extracts its RT-characteristics and these are put to a global RT data structure (RT-System).	

RT-System gives a useful insight to evolution of a GA and also helps to select jobs for their shifts
within an AL (mutation).	

!
PSP-Solver User Options Overview	

PSP-Solver is a command-prompt simple program with no GUI. All options are entered via
program command line arguments:	

./psp [options]	

Option format Name Default value

-2 When crossing two genomes,
use both resulting children.

False.

-1 Allow parallel run of program. Disabled.

-@ filename Set of ALs for population init. Not used.

-# int Maximum number of genome
evaluations.

Not limited.

-$ string Auxiliaty string. Empty

-a Create new ALs by RT-specific
mutations

False.

-A float Ratio of newly rnd generated
genomes. Values in <0,1>.

0

-c int Maximum number of mutated
jobs in one AL.

10

-C int Cross partners selection
method.

0

PSP-Solver User Guide

-d Proceed a small mutation on a
genome created by crossover.

False.

-D int Muta selection method. 0

-E ID Experiment identification string. Empty

-G int Basic algorithm number (use
just with MPGA).

0

-g int Number of generations.

-I int Auxiliaty integer.

-K int Mutation description mode. 0

-L Load/Save RT False.

-l int Maximum numbers of LR-
justification cycles.

-m int RT selection mask. 5

-M int Program run mode. 0

-N Reverse optimization sense
(find maximum on the
objective function).

False.

-n int Pseudo-random generator
initialization method (seed).

3

-p int Number of genomes in
population.

-P int-int-int PSP task ID (group, set, item) 30-1-1

-Q int Set mode of dynamic mutation
cycles.

Fixed number of cycles.

-S int AL SGS mode. 0

-s int Maximum mutation depth. Unlimited.

-T int Selection for copy method.

-U Ignore resource capacities. False.

-u filename RCP filename to load.

-V Variability (MPGA) False.

Option format Name Default value

PSP-Solver User Guide

!

-w Disable RT. RT enabled.

-W “list of float” Configure crossover in E-
GARTH.

TODO

-x Seljob inverted

-X int Task number.

-Y float Ratio of mutated genomes in
population.

0.2

-z Disable AL normalization. Enabled

-Z “list of int” Fixed set of selected jobs for
mutation.

Not used.

Option format Name Default value

PSP-Solver User Guide

!
Detail description of program execution and behavior options	

Loading the task	

PSP-Solver loads tasks in RCP format which is used in PSPlib (data sets j30, j60, j120). The input
task may be given by one of the following ways:	

• -u filename,	

• -P group-set-id, where group is in {30, 60, 120},	

• -X num (num is in {1,…,480 or 600}).	

In experimental mode, -E id sets an experiment identification string. The program results are then
printed with a set experiment id. See section (...) for details on Experimenting.	

Basic GA parameters	

Genetic algorithms (GA) work over a set of N genomes (parameter -p N) and make M
generation cycles (parameter -g M). If the task is entered with -P or -X option, PSP-Solver loads an
information about best known solution (Upper Bound - UB) of a given task. 	

GA will stop at a generation when at least one genome reaches a makespen equal to the loaded
UB. Add -f option if the GA should continue in further evolution.	

At each generation cycle, GA selects some genomes for their copying without any modification (-
F float), certain portion of the population for mutation (-Y float, where float in <0, 1>) and certain
portion of the population to be replaced by newly randomly generated genomes (-A float). The rest
of the population is then filled with genomes made by crossover operation. 	

Each constructed genome (randomly generated, mutated, made by crossover) is evaluated with a
specified schedule scheme. The scheme is set with a -S num option, where num means:	

• num = 0, standard serial generation schedule scheme (S-SGS).	

• num = 5, S-SGS with repetitive Left-Right justification - MLR-SGS scheme.	

Schedule generation scheme other than S-SGS interpret the genome’s AL in generaly different
order. For this reason, PSP-Solver normalizes genome’s AL (see Genome normalization) if -z option is
not set (i.e. normalization is default).	

!
Program run basic parameters	

PSP-Solver instantiate a solving algorithm or technique specified by -M num option. There are the
following algorithms implemented:	

PSP-Solver User Guide

The selected algorithm is generally an optimizer minimizing the objective criteria, which is
normally a genome’s makespan. For a study purposes, PSP-Solver allow searching for a maximum
makespan if -N option is set.	

Every algorithm instantiates its internal pseudo-random generator (Mersenne Twister) which is
initiated with a seed specified by -n num option:	

• num = 0, no initialization.	

• num = 1, seed is taken from the OS clock information (not suitable for parallel instantiation of
more rnd generators).	

• num = 2, seed is taken from /dev/random.	

• num = 3, seed is taken from /dev/urandom (default).	

• num = 4, seed is taken from random.org (not finished yet).	

GA terminates when/if:	

• best known solution was found (if such a solution is available) and -f is NOT set, or	

• predefined number of generations (-g num) was done, or	

• predefined number of SGS was computed (-# num).	

!
Evaluation of the population (computing SGS for each new genome) is the most time-consuming

operation, thus PSP-Solver offers to make it in parallel. Add -1 option to run this concurrently (you
should run it on multi-core CPU then). Paralelism is implemented via OpenMP library.	

The initial population is generated randomly by default. For an experimental purposes, it is also
possible to insert a file with a set of ALs (-@ filename option). The population is then constructed
from this file (up to a predefined -p num) and further filled up with random ALs up to the
population size.	

Num Name Other specific options

0 Simple GA with random mutations

1 GARTH RT options

3 Brute force search

4 Super BF

5 Multi-Population GA -G alg, -I popNum, -V

10 E-GARTH

101 Histogram scanner

PSP-Solver User Guide

!
Select-for-copying specific options	

The current population is ordered following the program’s specific optimized criteria (minimum
makespan by default). At each generation, a certain percentage of genomes (i.e. N genomes) is copied
with no modification to the just being created new population. Selection of these genomes is driven
by -T num option:	

• num = 0, the best N genomes are selected.	

• num = 1, N genomes are randomly selected.	

• num = 2, N genomes with best combination of their objective and age are selected.	

• num = 3, program evaluates a statistics on genomes and selects N mutually most distinct
genomes.	

!
Crossover operation specific options	

These options solve a crossover specific problems:	

• selection of two genomes to be combined (parents) with a two-point AL cross operator
(option -C num),	

• generation of the points c1 and c2 for the two-point cross operator (option -O num),	

• inserting the resulting children to the new population (options -d and -2).	

Let us assume two parents P1 and P2. Algorithm generates cross points c1 and c2 and proceeds
the cross operator over P1 and P2 resulting with children CH1 and CH2. By default, only CH1 is
inserted to the new population. If -2 is set, then both CH1 and CH2 are inserted. Before their
insertion, a so called small mutation may be applied on children if -d option is set.	

The small mutation on a given AL means:	

• selecting randomly a predefined number of jobs (=3 by default) -> selected jobs.	

• for each selected job:	

• shift the job on left or on right (decided randomly for each one) within the AL, but for
maximally N possitions in AL (=10 by default).	

The parents P1 and P2 are selected randomly from subsets SUB1 and SUB2 of the current
population depending on a particual GA algorithm.	

In the Basic GA (-M 0, -M 1), the parent P1 is randomly chosen from the the whole old
population and P2 is chosen to be his partner following the -C num setting:	

• num = 0, P2 is chosen randomly.	

PSP-Solver User Guide

• num = 1, P2 is chosen as most distant AL to the P1.	

• num = 2, similar to num=1.	

In the EGA algoritm, the amount of genomes decided to be created by crossover is split into 4
parts:	

1. P1 is from genomes selected-for-copy, P2 is from newly created genomes (new randomly
generated, mutated).	

2. P1 is from newly created genomes, P2 is from the whole old population.	

3. P1 is from the just being created new population, P2 is from the old population.	

4. P1 and P2 are both randomly chosen from the old population.	

Splitting the capacity for crossed genomes is user-specified by -W float-list option. 	

Decision on c1 and c2 crossing points is set by -O num option as follows:	

• num = 0, c1 and c2 are randomly decided.	

• num = 1, half-radnom (TODO).	

• num = 2, set differs more than.	

• num = 3, vector differs more than.	

!

PSP-Solver User Guide

!
Mutation specific option	

Mutation is the most complex operation in PSP-Solver. The mutation has the highest impact on
diversity of populations being evolved.	

By saying mutation of a job j on a possition p within a given AL, we usually mean shifting j from
its starting possition p on left or on right with keeping j-job’s precedence criterias, i.e. there is no job k
to the left from j’s current possition which is j’s successor (there is no precedence (j,k)).	

There are the following options regarding a single one AL to be mutated:	

At each generation, GA decides a number N of genomes to be mutated (-Y float). The algorithm
then selects N genomes from the old population using a selection mechanism (-D num), where
“num” means:	

• n = 0, randomly chosen.	

• n = 1, most wide spectrum of RT (to be explained...).	

• n = 2,3,4,5,...	

Selection of genomes results with a certain subset of genomes. For each one, the algorithm
decides particular jobs to be shifted regarding the -K num option:	

• num = 0, basic RT selection.	

• num = 6, randomly chosen.	

•	

!

Option Name Meaning

-c num Number of mutation cycles “num” jobs in AL will be
selected for shifting.

-s num Maximum mutation depth No job will be shifted from its
starting possition p to a
possition r, where |r-p|>num.

-D num Method selecting genomes to
be mutated.

-Q num Dynamic number of mutation
cycles.

Code for a method dynamically
deciding number of mutation
cycles.

-K num Mutation method

PSP-Solver User Guide

Solvers and tools	

!
Histogram scanner (-M 101)	

Relevant options:	

• -G 8, to set Mendes-style genome (AL is default).	

• -I num, num is a number of generated genomes.	

• -S num, AL SGS code (-l num in addition to -S 5).	

• -1 to run it in parallel.	

