
Visual Coordination Diagrams

FIT VUT Brno, Seminar

David Šafránek
supervised by Luboš Brim

Faculty of Informatics, Masaryk University Brno
Czech Republic

xsafran1@fi.muni.cz

Motivation

� architectural description

�

design vs. implementation of complex systems

�

primary focus on design issues

�

component-based structure

� abstraction, refinement

� hierarchy

� component reuse

�

structure vs. behavior

Motivation

� visual notation

�

unambiguous rigorous interpretation needed

� model checking and eqivalence checking

�

visual notations of UML are not formal

� structure – communication diagrams

� behavior – state diagrams

� coordination – sequence diagrams

�

some visual formalisms for behavioral description exist

� architectural formalism can be build above them

� independency of structural and behavioral aspects

� call for some heterogeneity

Objectives of this Work

� filling a gap between semi-formal visual notations and

programming languages for concurrent systems

� a formal visual design language for concurrent systems

� Visual Coordination Diagrams (VCD)

� exogenous coordination model

�

coordination layer

� implicit — VCD

�

behavioral layer

� explicit — Statecharts, Petri-Nets, . . .

� static architecture description

Related Work

Visifold/Manifold LindaToolBus

[Smolka00]

Write

LOTOS CSP Pi-calculus PN^2

Message sequence charts

SGCCS
[Safranek02]

VCD
[this work]

Statecharts

DarwinAesop

CORBA

semiformal design languages

programming languages

formal design languagesGCCS

UML

Rapide

Principal Ideas

� component-based system behavior
= component behavior + interaction

�

components + connectors

�

�

behavioral (component) specification

� various models of computation

�

interaction (connector) specification

� various communication mechanisms

� component-based systems can be heterogeneous

�

behavioral-level heterogeneity

�

interaction-level heterogeneity

Principal Ideas

Principal Ideas

� separation of connectors from components

�

inspired by Wright [Garlan97]

�

computational model of a component embedded into

interface

�

interface defined by set of ports

�

connectors = glue among component interfaces

�

connectors model protocols of interaction

(coordination models)

� hierarchy of components

�

inspired by SOFA [Plasil98]

�

recursive structure

Relation with UML (intuition)

� class diagrams

�

VCD can be taken as a profile

� class of computational components

� classes of connectors

� collaboration diagrams and MSCs

�

static communication infrastructure

� statecharts

�

UML statecharts can be directly used with VCD

Overview of VCD – Hierarchy

A

CB D

E F

networks

processes
., +

|, [], \{ }

VCD – A Network

portsbus

network

components

� components embedded in networks

� component interfaces contain unidirectional ports

� connectors represented by buses

VCD – Network nesting

gate: {Router.sw_in−>HW unit.sw_in, Router.sw_out−>HW init.sw_out}

� nested network bound to the encompassing interface by free ports

� binding realized by port names identity or by a network gate

VCD – Buses and Bus Classes

� atomic network components with reserved semantics

�

VCD representation of connectors (coordinators)

�

they cannot be refined with a network

� buses can model various coordination mechanisms

�

both synchronous and asynchronous types

�

different buses can be mixed in a particular network

� bus class

�

a template for a particular coordination mechanism

�

semantically based on a state-transition logic

� bus instance

�

an occurrence of a bus in a network

VCD – Buses and Bus Classes

A!Bus
Instance

bus interface

bus interface

VCD – Buses and Bus Classes

� . . . a countable set of output ports

�

�

. . . a countable set of input ports

� � ��� �

Bus class

�

is a tuple

�� � 	 �
��

where

�

�

is a (countable) set of states,

�
� � �

an initial state,

�

	� � � � � � � � � �
a (countable) transition relation.

Bus instance

�

of a bus class

�

is a tuple

� � �� � �

where

�

� � � � �

,

� � � � �

(finite) . . . a bus interface

�

�

. . . a bus class.

An Example of a Bus (I)

synchronous multicast coordination model

bus class:

��� � � ��
� � � 	 �
�

��� � � � � � � � 	� �

 �
� � � � � � � �
�
 � 	

bus instance:

Bcast

parsed/parsed1, parsed2

An Example of a Bus (II)

asynchronous message passing coordination model

�

��
� � � � �� � 	 �
�

�

� � �
 � � � � � �
�

�

	

is defined by the following expression:

��� �
 �
� � � � � � � �
 �
 � 	

� �
	� � � �
	� 	�
� �
 � �
 �
	� � � � �
 � �
�
 � 	

byte/−

−/byte_in

BUF

VCD – Behavioral Layer

� can be defined using any formalism semantically

compatible with the notion of I/O LTS

� multilinguality in the scope of expressiveness of I/O LTS

� we use set-labeled LTSs to capture Statecharts,

Petri-Nets, . . .

An I/O LTS is a tuple

�� � 	 �
��

where

�

�

is a set of states (potentially infinite),

�
� � �

an initial state,

�

	� � � � � � � � � �

a transition relation.

VCD – Semantics

bus I/O LTS
co

mp.
I/O

 LT
S

bus I/O LTS

comp. I/O LTS

network I/O LTS

inference rules
bus + comp. steps

a network step
w.r.t. links, ports, gates

VCD – Semantics (II)

component body

�

inserted in interface

�

makes a VCD component

�

SC:
I

transition of S: � ��� �	� �
 ��
�� �� ��� � � ��� �

and

�
 � � � � � � � � � � �

transition of C: � � ��� �� � � �� � � � �

where� � � � � � � �
 � �

is a set of all actions of

�

VCD – Semantics (III)

components

��� . . .

� � and buses

�� . . .

��� inserted in network

�

N:
C1:

M1 Mm
Cn:

� stand-alone components — interleaving

� components connected to buses — interleaving or

synchronization

Synchronous Behavior

bus class:

� � � � � ��
� � � 	 �
�

� � � � � � 	� �

�
� � � � � �
�
 � 	

bus instance:

SYN

−/clk1,clk2,clk3,clk4

Tool support (prototype)

Conclusion

� we built a simple design notation with formal semantics

� static hierarchical coordination model

� Statecharts-like models can be used for atomic processes

VCD UML SOFA Manifold

hierarchy networks object aggregation compound comps. meta-coordinators

architecture static static dynamic (DCUP) dynamic

heterogeneity various buses connectors = comps. gen. connectors asynch. channels

state-transition models UML objects diff. paradigms different paradigms

multilinguality LTS with event-sets UML statecharts Java, C++,. . . C++, Fortran, . . .

(Statecharts, Petri-Nets, . . .)

application design of distr. SW, HW, design of SW implement. of distr. SW design and implementation

synchronous systems async. systems of parallel/distr. systems

Future Work

� typed value-passing support

� relation with UML

� extending the network layer (classes of buses)

� extending the behavioral layer (Petri-Nets,. . .)

� improving implementation

� connection with verification tools (DiVinE)

Publications

VCD: A Visual Formalism for Specification of Heterogeneous Software

Architectures

with J.Simša, accepted to SOFSEM 2005

Visual Specification of Systems with Heterogeneous Coordination

Models

in proceedings of FOCLASA 2004

Visual Specification of Concurrent Systems

in proceedings of ASE 2003

SGCCS: A Graphical Language for Real-Time Coordination

in proceedings of FOCLASA 2002

SGCCS Semantics

NETs + STDs

GS

LTS

SCCS
TS

NL
sos

BL

map f
map g

soscanonization
consistency

��� � � �� � � � � ��� � � �
 �

 � � �� � � �
 �

 � � ��� � � �

 � � � 	

� � � � ��� � � �
 �

 � � � �� � � �
 �

 � � ��� � � �

 � � � 	

 � ��� � �
 � � �� � �

� �
 � ��� �
 � � � �� � � ��� � � �
 � ��� �
 � � � �� � �� � � � �
 � � � �
 � � � �� � � �
 � �� �

� � �
 � ��� �
 � � � � � � � �� � � �
 � � �� �
 � � � �� � �� � � � �
 � � � �
 � � � �� � � �
 � �� �

	Motivation
	Motivation
	Objectives of this Work
	Related Work
	Principal Ideas
	Principal Ideas
	Principal Ideas
	Relation with UML (intuition)
	Overview of VCD -- Hierarchy
	VCD -- A Network
	VCD -- Network nesting
	VCD -- Buses and Bus Classes
	VCD -- Buses and Bus Classes
	VCD -- Buses and Bus Classes
	An Example of a Bus (I)
	An Example of a Bus (II)
	VCD -- Behavioral Layer
	VCD -- Semantics
	VCD -- Semantics (II)
	VCD -- Semantics (III)
	Synchronous Behavior
	Tool support (prototype)
	Conclusion
	Future Work
	Publications
	SGCCS Semantics

