Abstract Regular Tree Model
Checking

Adam Rogalewicz

* Supervised by
* Milan Ceska

® Join work with:

®* Tomas Vojnar
* Peter Habermehl — LIAFA Paris
* Ahmed Bouajjani — LIAFA Paris

Program

* Tree automata and transducers
* Abstract regular tree model checking
® Verification of programs with pointers

Tree Languages - Alphabet

* Ranked Alphabet
A:0B:1 C:2 D:2

A B C D

VA NVAN

Tree Languages - Trees

I Tree Automata

States:
I p.q.r (r - final state)

Rules:
*a->p
*a->q
*b(p) ->p
*d(p,q) ->r
*c(p,r) >t

Tree Automata

States:
p.q.r (r - final state)

Rules: ‘
*a->p

*a->q
*b(p) >p

*d(p,q) >r
*c(p,r) ->1

Tree Automata

States:
p.q.r (r - final state)

Rules:
*a->p
*a->(q
*b(p) ->p
*d(p,q) ->r
*c(p,r) >t

o

I Tree Automata
States: ‘
I p.q.r (r - final state) C
Rules:
*a->p

\ \

B D
*a->q
*b(p) ->p /L
*d(p,q) ->r1 @

*c(p,r) ->1

Tree Automata

States:

p.q.r (r - final state)

Rules:
*a->p @

*a->(
*b(p) ->p
*d(p.q) >
*c(p,r) >t

Tree Automata

States:
p.q.r (r - final state)

Rules:
*a->p @

*a->q
*b(p) >p

*d(p,q) >r
*c(p,r) ->1

I Tree Automata

States:

I p,q.r (r - final state) m

T

Rules:
*a->p
*a->q
*b(p) ->p
*d(p,q) ->r
*c(p,r) >t

Tree Transducers

®* Finite state machines

*INPUT: a tree automaton

* OUTPUT: a tree automaton

* Describe relation between automata

Tree Transducers - Rules (1)

Q
A |
Finite tree

I Tree Transducers - Rules (2)

|

I Tree Transducers - Rules (3)

44

C
A —
A A
2
B > A
qa
c = b
ql q2

Linear Tree Transducers

* Rules can not duplicate parts of trees

* Closed for composition
* Allow to compute post- and pre- for a given tree
automaton

Structure Preserving
Tree Transducers

® Just change symbols in nodes

®* Inverse relation 1s also structure preserving
transducer

* It 1s enaugh for many interesting problems

Regular Tree Model Checking

* Program configuration = tree
®* Set of configurations = tree automata
* Behaviour = tree transducer

* Set of 1nitial configurations = tree automata
* Set of bad configurations = tree automata

I Regular Tree Model Checking:
I Verification Problem

I w*(Init) A bad = &

Regular Tree Model Checking:
Verification Problem

t*(Init) N"bad =

* |n general undecidable

* Partial methods
* Widening
* Creation of history transducers
* Abstractions on automata

Abstraction on Automata

* GOAL: Simplify a automaton

®* Abstraction function &
L(A) c L(a(A))

Abstraction on Automata (2)

* Abstraction based on state collapsing:
several states -> one new state

* Equivalence relation on states

Abstraction on Automata (3)

Abstraction on Automata (3)

Abstraction on Automata (3)

Abstractions on Automata (4)

* Equivalence relation 1s based on languages
accepted by states

* Languages of finite depth
* Predicate languages

I Abstract Regular Tree MC

* Generalization of abstract regular MC
[Bouajjani,...]
* Coputation of overapproximation of T*(Init)

O(t*(Init)) N bad = I

I Abstract Regular Tree MC

I Abstract Regular Tree MC

I a(lnit)

I Abstract Regular Tree MC

a(Init)

@

Abstract Regular Tree MC

Bad

Abstract Regular Tree MC

Bad

Verified Protocols

Length abstractioPredicate based abstractic

Token passing

backwards

- 0.08s

forwards: 0.06s

Two-way token passin

backwards

:1.0s

forwards: 0.09s

Percolate backwards: 20.8s [forwards: 2.4s
Tree arbiter backwards: 0.31s |backwards: 0.34s
Leader election backwards: 2.0s [forwards: 1.74s
Broadcasting backwards: 9.1s [forwards: 1.0s

Possible Use of ARTMC

* Programs with pointers

* XML manipulations

* Cryptographic protocols

* Network broadcasting

* Systems with dynamic process creation

ARTMC and Programs with
Pointers

®* Inspirated by use of ARMC for programs with 1-
selector linked lists [Bouajjani,...]

®* In general, data structure 1s a directed graph
=> [t 1s necessary to have unbounded number of
“extra pointers”

Programs with Pointers:
Tree with Linked Lists

Left

Right Left

Next b Next ;U Next ‘

Programs with Pointers

* Tree 1s used just like a backbone
* Pointer destination 1s encoded by so-called
“pointer descriptors”
* Pointer descriptor describes destination
relatively to the tree shape.

* Each pointer descriptor has an “UP” part,
and “DOWN” part

Programs with Pointers:
Tree with Linked Lists

It 1s necessary to have 3 descriptors:
*left- e /7

*right - g \”

extra - “(/) (V*)”

. Null

Righ Left

| L
Null w

Right Left | Right Left |

NUH/(UI] Extra Null ul/\E};tra Null Nglt S ExtraNull Ayggp S Extra

(\¥/) (V¥) . i

Righ Left
. Null

Extra Null g b Extra

Nllll/é\ull

Programs with Pointers:
Destination of the pointer

Descriptor “extra” in previews example 1s not
deterministic -> there 1s more possible destinations

* Combination of descriptors and markers
* Descriptor shows possible destinations

® Marker restrict them

* Still not deterministic => We use all possibilities

Programs with pointers —
operations on the structure

* All operation except x.next=y can be performed by
tree transducers

®* representation 1s not closed for x.next=y — there in
not guarantee of existence of suitable descriptor

I X.next=y

I * Reuse of existing pointer descriptor (if exists)
® can be performed by tree transducers

* Refine set of pointer descriptors
* Add new one
®* Increase power of existing one
® It 1s necessary to create new transducer

Programs with pointers
- state of research

* Ongoing implementation of convertor from
programs to tree transducers in Mona GTA library

* PLAN: paper for TACAS 2006

Publications

* Rogalewicz, Vonar: Tree Automata in Modelling and
Verification of Concurrent Programs — ASIS 2004

* Rogalewicz: Towards Applying Mona In Abstract Regular
Tree Model Checking — EEICT 2005

* Bouajjani, Habermehl, Rogalewicz, Vojnar: Abstract Regular
Tree Model Checking — submitted to Infinity 2005

