Building User Interfaces

Chapter 5

Squeak: Object-oriented design
with multimedia applications

Story

What a Ul toolkit does: Iteratively building
a Clock Ul without one

Pluggable Ul in Squeak: MVC and
Morphic

Using Morphic

12/4/02 Copyright 2002, Mark Guzdial

Challenges of
0-0 Ul Design

Two key questions:

How do you create user interface software
that you can maintain, is well object-oriented,
IS easy to build, and is easy to change?

How do you create user interfaces that
people can actually use?

The first is our focus here, and is MUCH
easier than the second

12/4/02 Copyright 2002, Mark Guzdial

MVC:
Model-View-Controller

Key idea in Ul Software
Models define the world
Views are what the users see

Controllers handle user input (low-level:
mouse, keyboard, etc.)

Hard to use, but good for engineering

Other models: Merge all three
Easier to build, harder to maintain

12/4/02 Copyright 2002, Mark Guzdial

MVC and Morphic

Squeak supports multiple models of Ul building

Can do raw polling of Sensor and posting to
Display
Can code in basic MVC structure

Can code in pluggable structure for both
MVC and Morphic

Can code in Morphic structure
Controller embedded in the World.
Models and Views can be merged

12/4/02 Copyright 2002, Mark Guzdial

Why we want MVC

What if you build an interface for Clock, and later want it
to be an AlarmClock?

What if you build a digital clock face, but later want the
analog form?
Can we create a system where:

We can swap the model out, and the view stays the same

We can change the view, and the model remains the same

How little do the Model and View have to know of each
other?

12/4/02 Copyright 2002, Mark Guzdial 6

Clock Ul we're going to build

1157356

Bliniites + Bliniutes -

12/4/02 Copyright 2002, Mark Guzdial

Round #1: Munge it all

12/4/02

Clock

displayFormat
position

displayFormat:
hours
nextSecond
setTime:

start

stop

addHour
subtractHour
addMinute
subtractMinute
catchEvents
openWindow

SecondsTimer

=,|{ process
clock timer o
startTicking
stopTicking
1
time Time
hours
minutes
seconds

Copyright 2002, NrarkGuzarar—

Opening a Window

openWindow
| pen |
"Open the blank frame"

(Form extent: 200@200) fillWhite
displayAt: position.

12/4/02 Copyright 2002, Mark Guzdial

Opening a Window, Part 2

"Draw the Buttons"

pen := Pen new.

pen up. pen goto: (position x) @ ((position

y)+100) . pen down.
pen north. pen turn: 90.

pen go: 200.

pen up. pen goto: (position x) @ ((position

y)+150) . pen down.
pen go: 200.

pen up. pen goto: ((position x)+100) @
y)+100) . pen down.

12/4/02 Copyright 2002, Mark Guzdial

((position

Opening a Window, Part 3

pen turn: 90.
pen go: 100.

'"Hours +' displayAt: ((position x)+25) (
((position vy)+125).

'"Hours -' displayAt: ((position x)+125) (
((position y)+125).

'"Minutes +' displayAt: ((position x)+25) @
((position y)+175).

'"Minutes -' displayAt: ((position x)+125) @
((position y)+175).

12/4/02 Copyright 2002, Mark Guzdial

11

Displaying Time

nextSecond
time := time addTime: (Time fromSeconds: 1).
self timeDisplay.

timeDisplay

' ' displayAt: position + (50@50). "Erase
whatever time was there before"

self display displayAt: position + (50 @ 50).

12/4/02 Copyright 2002, Mark Guzdial

12

An Event Loop

Core to most modern user interfaces

Basically
Is there a user event? If so, get it.
Who needs it? (focus of control)
Pass on the event

Absolutely critical to shift agency from
computer to human

12/4/02 Copyright 2002, Mark Guzdial 13

Our First Event Loop

catchEvents
| hourPlus hourMinus minutePlus minuteMinus click |
"Define the regions where we care about mouse clicks"

hourPlus := (position x) @ ((position y)+100) extent:
100@50.

hourMinus := ((position x)+100) @ ((position y)+100)
extent: 100@50.

minutePlus := (position x) @ ((position y)+150) extent:
100@50.

minuteMinus := ((position x)+100) @ ((position y)+150)
extent: 100@50.

12/4/02 Copyright 2002, Mark Guzdial 14

Our First Event Loop, Part 2

"Enter into an event loop”

[Sensor yellowButtonPressed] whileFalse: "Yellow
button press ends the clock”

["Give other processes a chance, and give user a
chance to pick up.”

(Delay forMilliseconds: 500) wait.

12/4/02 Copyright 2002, Mark Guzdial

15

Our First Event Loop, Part 3

(Sensor redButtonPressed) ifTrue: "Red button
press could go to a button”

[click := Sensor mousePoint.

(hourPlus containsPoint: click) ifTrue: [self
addHouir].

(hourMinus containsPoint: click) ifTrue: [self
subtractHoury.

(minutePlus containsPoint: click) ifTrue: [self
addMinute].

(minuteMinus containsPoint: click) ifTrue:
[self subtractMinute].]].
12/4/02 Copyright 2002, Mark Guzdial 16

Running the Code

c .= Clock new.

c position: 100@10.

c setTime: (Time now printString).
c openWindow.

c start.

c catchEvents.

“Don’t forget c stop!”

12/4/02 Copyright 2002, Mark Guzdial

17

Critique of Round #1

Modified Clock to add user interface
Do real clocks have positions on the screen?

It's Impossible to maintain
Swap from digital to analog? Start over!

Clock has too much responsibility
Absolutely nothing reusable here

12/4/02 Copyright 2002, Mark Guzdial 18

Round 2:
ClockWindow and ClockButton

SecondsTimer

process
Clock 51 . 51 startT.ick.ing ClockWindow
displayFormat clocltimer | stopTicking buttons
1 1 position
displayFormat: |« =
hours clock window addButton:
nextSecond openOn:
setTime: processEvents
start timeDisplay
stop
addHour
subtractHour
addeUtPT 1 0..*\l/ buttons
subtractMinute <
model ClockButton
\|/. action
1y time frame
Time name
hours inControl:
minutes process
12/4/02 seconds |ht 2002, Mark Guzdial draw

Details

ClockWindow

Handles position, timeDisplay, and
processEvents from Clock

Still needs to know Clock for displaying

ClockButton

Knows its model, action, frame, and name

Knows how to draw, process, and whether its
inControl.

12/4/02 Copyright 2002, Mark Guzdial 20

Opening Windows in Round #2

openOn: aModel
| button |
position isNil ifTrue: [self error: 'Must set position first."].

"Set this model as this window's clock"
clock := aModel.

"Open the blank frame"
(Form extent: 200@200) fillWhite displayAt: position.

12/4/02 Copyright 2002, Mark Guzdial

21

Opening Windows in Round #2,
Part 2

"Draw the Buttons"

button := ClockButton make: 'Hours +' at: ((position x) @ ((position y)+100)
extent: 100@50) for: aModel triggering: #addHour.

self addButton: button.

button := ClockButton make: 'Hours -' at: (((position x)+100) @ ((position
y)+100) extent: 100@50) for: aModel triggering: #subtractHour.

self addButton: button.

button := ClockButton make: 'Minutes +' at: ((position x) @ ((position
y)+150) extent: 100@50) for: aModel triggering: #addMinute.

self addButton: button.

button := ClockButton make: 'Minutes -' at: (((position x)+100) @ ((position
y)+150) extent: 100@50) for: aModel triggering: #subtractMinute.

self addButton: button.

12/4/02 Copyright 2002, Mark Guzdial 22

Adding a Button, lazily

addButton: aButton
buttons isNil ifTrue:
[buttons := OrderedCollection new].
buttons add: aButton.

12/4/02 Copyright 2002, Mark Guzdial

23

Processing Ul Events

processEvents

"Enter into an event loop"”
| click |
[Sensor yellowButtonPressed] whileFalse: "Yellow button press
ends the clock”

["Give other processes a chance, and give user a chance to
pick up.”

(Delay forMilliseconds: 500) wait.

(Sensor redButtonPressed) ifTrue: "Red button press could go
to a button”

[click := Sensor mousePoint.

buttons do: [:b |

(b inControl: click) ifTrue: [b process]].]].
12/4/02 Copyright 2002, Mark Guzdial 24

Making Buttons

make: aName at: aRect for: aModel triggering:
aMessage

| newButton |

newButton := self new.
newButton name: aName.
newButton frame: aRect.
newButton model: aModel.
newButton action: aMessage.
newButton draw.
‘newButton.

12/4/02 Copyright 2002, Mark Guzdial

25

Drawing a Button

draw
"Just like Round #1, but now in ClockButton"
| pen |
pen := Pen new.
pen color: (Color black).
pen up. pen goto: (frame origin).
pen north. pen turn: 90. pen down.
pen goto: (frame topRight).
pen turn: 90. pen goto: (frame bottomRight).
pen turn: 90. pen goto: (frame bottomLeft).
pen turn: 90. pen goto: (frame origin).

name displayAt: (frame leftCenter) + (25@-10). "Offset in a bit, and up a bit
for aesthetics"

12/4/02 Copyright 2002, Mark Guzdial 26

inControl and process

The "hardest” parts are actually the
smallest and easiest

inControl: aPoint
"If the point is in the frame, have control"
Mrame containsPoint: aPoint
process
"Tell the model to do the action”
model perform: action

12/4/02 Copyright 2002, Mark Guzdial 27

Displaying Time is still Yucky

timeDisplay "In ClockWindow"
"ClockWindow asks Clock for time"
' "displayAt: position + (50@50). "Erase”
(clock display) displayAt: position + (50 @ 50).

nextSecond “In Clock"
"Clock tells ClockWindow when"

time := time addTime: (Time fromSeconds: 1).

window timeDisplay.
12/4/02 Copyright 2002, Mark Guzdial 28

Running Round #2

c := Clock new.
w = ClockWindow new.
w position: 100@10.

c setTime: (Time now printString).

w openOn: c. ¢ window: w.
c start.
W processEvents.

12/4/02 Copyright 2002, Mark Guzdial

29

Critiquing Round #2

Clearly, much nicer separation between
view and model

ClockWindow and ClockButton (except for
the name) are pretty darn generic
But text update is still a problem

Why does Clock need to know its view?

Why should the window have hard-coded a
request to its clock?

12/4/02 Copyright 2002, Mark Guzdial 30

Solution:
Dependents and change/update

A view becomes dependent on its model
model addDependent: view
A model can announce a change in some
aspect of itself
self changed: #aspect
Dependent views are asked if they would
like to update based on the given aspect

dependents do: [:each |
each update: #aspect].

12/4/02 Copyrlght 02 Mark Guzdial 31

Change/update and Dependents
buys us Flexibility

Can have any number of views on same
model

E.g., views for Doctors, Nurses, Billing Office
all on same Patient model

Views can update only on aspects they
care about

self changed: #testResults vs. self changed:
#prescription

12/4/02 Copyright 2002, Mark Guzdial 32

Decreases information
sharing

Announcing a changed: is cheap

Do it often, whether or not a view may care about
that aspect

Models don't have to manage their dependents
A general dependents dictionary stored in the system

Can subclass Model instead of Object for more
efficiency

Views need to know their model and the aspect
of the model that they care about

12/4/02 Copyright 2002, Mark Guzdial 33

Round #3: Adding ClockText

: ClockWindow
Clock SecondsTimer
buttons
displayFormat <1 1| process osition
clotimer . P
displayFormat: startTicking :
h stopTicking addButton:
outrg g openOn:
nextSecon «
processEvents 0. Cl
e ————= ClockButton
setTime: timeDisplay buttons
start action
stop 1
addHour < frame
model name
subtractHour .
addMinute 1 inControl:
subtractMinute f————=> Time process
time draw
1Amodel hours
minutes
seconds
ClockText
position
query
12/4/02 Copyright 2002, Mark Guzdial update -

Round #3:
Notable for What's Gone

Clock doesn't know window

ClockWindow doesn't know its clock
ClockWindow won't even know its text!

ClockText and ClockButtons know their
models

12/4/02 Copyright 2002, Mark Guzdial 35

How a Clock does
nextSecond

hextSecond
time := time addTime:

(Time fromSeconds: 1).

self changed: #time.

12/4/02 Copyright 2002, Mark Guzdial

36

ClockText is dependent on its
Clock

model
"model
model: aModel
model := aModel.
aModel addDependent: self.

12/4/02 Copyright 2002, Mark Guzdial

37

ClockText handles update:

update: anEvent

anEvent = #time

ifTrue: [

' " displayAt: position . "Erase”
(model perform: query)

displayAt: position.]

12/4/02 Copyright 2002, Mark Guzdial

38

Creating a ClockText

ClockText class method
at: aPosition on: aModel for: aQuery
| text |
text := self new.
text position: aPosition.
text model: aModel.
text query: aQuery.
Mext

12/4/02 Copyright 2002, Mark Guzdial

39

Round #3: Opening a Window

openOn: aModel
| button |
position isNil ifTrue: [self error: 'Must set position first."].

"Open the blank frame"
(Form extent: 200@200) fillWhite displayAt: position.

"Setup the textArea"
ClockText at: (position + (50@50)) on: aModel for: #display.

12/4/02 Copyright 2002, Mark Guzdial

40

Opening a Window, Part 2

"Draw the Buttons"

button := ClockButton make: 'Hours +' at: ((position x) @ ((position y)+100)
extent: 100@50) for: aModel triggering: #addHour.

self addButton: button.

button := ClockButton make: 'Hours -' at: (((position x)+100) @ ((position
y)+100) extent: 100@50) for: aModel triggering: #subtractHour.

self addButton: button.

button := ClockButton make: 'Minutes +' at: ((position x) @ ((position
y)+150) extent: 100@50) for: aModel triggering: #addMinute.

self addButton: button.

button := ClockButton make: 'Minutes -' at: (((position x)+100) @ ((position
y)+150) extent: 100@50) for: aModel triggering: #subtractMinute.

self addButton: button.

12/4/02 Copyright 2002, Mark Guzdial 41

Done with Clock Ul Rounds!

Note: YOU WILL PROBABLY NEVER
NEED TO WRITE CODE LIKE THIS!

No update:, but probably changed:
Probably never write your own event loop

But now you know what's inside the
toolbooks you use

12/4/02 Copyright 2002, Mark Guzdial 42

Strengths and Weaknesses of
MVC

Strengths

Clean O-O structure: Minimizes information sharing,
easy to maintain

Can support multiple views on same model

Weaknesses
Inefficient: Trace how an update occurs
Especially inefficient for multiple views
One view on multiple models breaks down
Introduce ApplicationModel
Research: Maintain the good parts, optimize In
12z4the system Copyright 2002, Mark Guzdial 43

Tracing an MVC Interaction

Clock

{Hours + J addHour
\ ClockText

self changed: #time

update: #time
model perform: #display
N2:33:45'

\

displayAt:

12/4/02 Copyright 2002, Mark Guzdial

44

The Need for
ApplicationModels

When yOu have a VieW NurseStation
drawing from multiple
models, managing

which model did the \‘
update is a
ResponSIblllty [Room as ApplicationModel]
Delegate the
Responsibility to a new
Model whose role is
just that
Patient #1 Patient #2 Patient #3

12/4/02 Copyright 2002, Mark Guzdial 45

Pluggable User Interfaces

ClockButton and ClockText are "pluggable”

We simply set the model and the query and use
perform:

The key parts have become "plugs”

Pluggable interfaces are easier to use, but less
flexible

The decisions of what can be sent between the view
and the model have been made for you

12/4/02 Copyright 2002, Mark Guzdial 46

Alternative to Pluggable

The class Button knows how to draw, respond if
inControl, and process

But process does nothing in the superclass

AddHourClockButton defines process as:

process
model addHour

SubtractMinuteClockButton defines process as:

Process
model subtractMinute

Observation: Only difference is in action message

12/4/02 Copyright 2002, Mark Guzdial 47

Pluggable Ul Objects in
Squeak

Three key ones: Buttons, Text, and List

Each defines a set of selectors that can
be sent from the view to the model

Each works in both MVC and Morphic
All limit you to announce changed. to only

defined selectors.

12/4/02 Copyright 2002, Mark Guzdial 48

PluggableButtonView
(PluggableButtonMorph)

Selectors/aspects: state and action
Am | on or off?

Here's what you should do when | get
clicked.

12/4/02 Copyright 2002, Mark Guzdial

49

PluggableButtonView Example

From Browser's class button

aswitchView « PluggableButtonView
on: self "The browser is the model”
“It's ‘on’ if the class messages are being shown”
getState: #classMessagesindicated
“When triggered, class messages should be shown”
action: #indicateClassMessages.
aswitchView
label: 'class’; ‘Label”
window: (0@0 extent: 15@8); "Size of view"
‘Make sure that no text gets whumped”

askBeforeChanging: true.
12/4/02 Copyright 2002, Mark Guzdial 50

PluggableTextView/Morph

Four selectors/aspects:
Retrieve text from model
Submits new text to model (nil = Read Only)

Current text selection
Yellow-button menu

12/4/02 Copyright 2002, Mark Guzdial

91

PluggableTextView example

From Celeste:

12/4/02

“Set up a StringHolder as a model”
textHolder «- StringHolder new .

textHolder contents: initialText. “Set the initial valug”

textView « PluggableTextView

on: textHolder “The textHolder is the model”

text: #contents “Ask for #contents when need the text”

“Send #acceptContents: with the text as an argument to save”

accept: #acceptContents:.

Copyright 2002, Mark Guzdial

52

PluggableListView/Morph

Selectors/aspects:

12/4/02

Contents of list
Currently selected item
Set current selection
Yellow-button menu
Keystroke handler

Copyright 2002, Mark Guzdial

53

PluggableListView example

Browser message category list:

“Browser is the model”
messageCategoryListView <« PluggablelListView on: self
“messageCategoryList returns the categories in an array”

list: #messagelategoryList
‘messageCategoryListindex returns an Integer of the current sel”
selected: #messageCategoryListindex

“when the user changes the selection, messageCategoryListindex is
sent”

changeSelected: #messageCategoryListindex:
"MessageCategory has its own menu”

menu: #messageCategoryMenu:.
12/'-HUL LOPYIIYIIL £2Uus, IVidiK OusZJidli

54

Simple Text Example Here

m := MyModel open.
m gobbledygook "Here is some text.™
m add: 'Here is MORE text.'.

m changed.

12/4/02 Copyright 2002, Mark Guzdial

55

Building a Pluggable Clock:
Clock must change slightly

Aspect symbol must equal query message

nextSecond
time := time addTime: (Time fromSeconds: 1).
self changed: #display.

12/4/02 Copyright 2002, Mark Guzdial 56

ClockWindow openAsMorph
for Morphic

openAsMorph
| win component clock |

"Create the clock™

clock := Clock new.

clock setTime: (Time now printString).
clock start.

"Create a window for it"

win := SystemWindow labelled: 'Clock’.
win model: self.

12/4/02 Copyright 2002, Mark Guzdial

o7

openAsMorph, Part 2

"Set up the text view and the various pieces”

component := PluggableTextMorph on: clock text: #display accept:
nil.

win addMorph: component frame: (0.3@0.3 extent: 0.3@0.3).

component := PluggableButtonMorph new
model: clock;
action: #addHouir;
label: 'Hours +;
borderWidth: 1.
win addMorph: component frame: (0@0.6 extent: 0.5@0.2).

12/4/02 Copyright 2002, Mark Guzdial 58

openAsMorph, part 3

"Rest of Buttons..."
component := PluggableButtonMorph new
model: clock;
action: #stop;
label: 'STOP";
borderWidth: 1.
win addMorph: component frame: (0@0.9 extent: 1@0.1).

win openinWorld.
Awin

12/4/02 Copyright 2002, Mark Guzdial

99

Pluggable Clock Ul in Morphic

w = ClockWindow new.

w openAsMorph.
124743

12/4/02 Copyright 2002, Mark Guzdial

What if you want to control
where things go?

Every Morph has a LayoutPolicy (set with
layoutPolicy:)

12/4/02

SystemWindows by default use a ProportionalLayout
(layoutPolicy: (ProportionallLayout new))
which allows for fractional positioning

Any Morph can also use a TableLayout
(layoutPolicy: (TableLayout new)) which
can lay things out dynamically.

AlignmentMorphs provide some default class
methods for creating well-formed layouts, like
columns and rows.

Copyright 2002, Mark Guzdial 61

More on TableLayouts

Table layouts dynamically
position things as they're added : List direction

They are inset from the edges : - ’
(layoutInset:) and from each
other (cellInset:)

They define adding in one-

vrap direction
-
Ln
(=]

dimension (listDirection: M ’ ’
#leftToRight) and two-

dimensions (wrapDirection:

#topToBottom) Picture by Andreas Raab

12/4/02 Copyright 2002, Mark Guzdial 62

Sizing in TableLayouts

Sizing of objects is controlled by vResizing: and

hResizing:

Most common options:
#shrinkWrap—fit tightly around submorphs
#spaceFill—take up as much space as owner allows
#rigid—no automatic resizing

Can also control listCentering: (#topLetft,
#center, etc.)

Lots of other options, e.qg., spaceFillWeight
which gives one object precedence over others

12/4/02 Copyright 2002, Mark Guzdial 63

Using an AlignmentMorph for
positioning

openAsMorph2
| win component filler clock |
"Create the clock"
clock := Clock new.
clock setTime: (Time now printString).
clock start.
"Create a window for it"
win := SystemWindow labelled: 'Clock'.
win model: self.

"Set up the text view and the various pieces"”

filler := AlignmentMorph newRow.

filler listCentering: #center.

win addMorph: filler frame: (0@0 extent: 1.0@0.6).

component := PluggableTextMorph on: clock text: #display accept: nil.
filler addMorph: component.

12/4/02 Copyright 2002, Mark Guzdial

64

Menus in Pluggable Interfaces

CustomMenu "From Celeste"

labels:
‘again\undo\copy\cut\paste\format\accept\cancel

compose\reply\forward' withCRs "Turn $\ into CR"
lines: #(2 5 6 8)
selections: #(again undo
copySelection cut paste format accept
cancel compose reply forward)
"Send startUp to get it to appear.
Selection is returned.”

12/4/02 Copyright 2002, Mark Guzdial

again
1110

cOpy
Cut

paste
format

acoept
caticel
Compose

reply
fotrward

65

Other and Simpler Menus

(Emphazizeddeny selections:
emphazes:

startUpWithCaption:

#'how' ‘well ‘doest this' Cwork?

#(bald plain italis struckOut plaing)
‘A Menu with Emphaszes’

how
well
Joee
thiz
worky

& Menu with Emphaczes

k

12/4/02

PopTTeMenu notif: "Your system will now <rash’

OE:

Copyright 2002, Mark Guzdial

E Tour system will now cracth

66

Simple Dialog

FillilnTheBlank

FillInTheElank

regquest, "What i your Davorite color?
ifiitial Antigweer: "ted. tio Blue, Ahhhl

That iz vour favorite golor?
red, f10 Blue, Ahhhkl

k

Aocaptia) | Caticell]l] |

12/4/02 Copyright 2002, Mark Guzdial

Introduction to Morphic

Any object can be a window

All on-screen objects are subclass of Morph
SO common behavior is assured

For example, moving things leaves a shadow

Morphic objects are:
Concrete

Uniform
Flexible

12/4/02 Copyright 2002, Mark G.._..... 68

Select Any Morph to
Manipulate In Standard Ways

System Morphic Selection
Macintosh Command-Click
Windows Control-Alt-Click
UNIX Right-Click

12/4/02 Copyright 2002, Mark Guzdial 69

Description

Menu Pick Up Move

é @@/% « Duplicate

Move to trash
T

Collapse —, <+ Debug

=4 + Change Color
@ <+ Change Size

Ellifze

Open Viewer —» jagich

Make Tile —» E.

12/4/02 Copyright 2002, Mark Guzdial

70

Morphs can be composed

Morphic-select something.

Repeat to walk through owners and
submorphs

Shift-Morphic-Select to go inner-to-
outer

Find submorphs also by inspecting
or exploring

Available through debug options in
Red-Halo Menu

12/4/02 Copyright 2002, Mark Guzdial 71

Creating Morphs

Use the Objects menu from World menu

Grab them from the flaps (Supplies,
Widgets)

Use the New Morph menu
Send “new openlnWorld” to Morph class

12/4/02 Copyright 2002, Mark Guzdial

72

Some Example Morphs

X Workspace

g « EllipzeMorph tiew extent: S0@100,
g pozition: S0@50,
e openlnWorld,

t « RectangleMorph tiew extent: S0@50,
t color: (Color greet),
t openliniWorld,

1 « LineMorph from: 0@0 to; S50@50 color: (Color red) widih: 5.
1 openlnnWarld,

12/4/02 Copyright 2002, Mark Guzdial 73

Programming Morphic from
the Viewer Framework

Develop the Falling Object Simulation

to these:

Pectangle =criptl

mouseDown| | X

Bectangle make sound - clink
Ellipse's| © y ®Ellipse's y v+ 7100 &
Ellipze"z| ¢ velecity =5 0

12/4/02

! [Ellipse fall

ticking| *| X|

Ellipse's | velocity += 7 1 © + Ellipse's welocity -
Ellipze forward by Ellipze's velocity -

Class-based vs. Prototype-
based Inheritance

Class-based

You create a class that defines data structure and
behavior

Instances are made of that class
Prototype-based
You create an instance and give it data and behavior

You can create instances off the instance
Some things get inherited, others may not

12/4/02 Copyright 2002, Mark Guzdial 75

Prototype-based Inheritance

Strengths
Easier to get started and build something
Works well for rapid prototyping

Weaknesses
Harder to maintain

12/4/02 Copyright 2002, Mark Guzdial

76

Programming in Morphic

Key instance variables and properties that
Morphs share

Both Morph and MorphExtension
Handling Morphic Events
Animating Morphs
Providing menus to Morphs
Structure of Morphic
Programming a Morphic Falling Object

12/4/02 Copyright 2002, Mark Guzdial 77

Overall Structure of Morphic

All morphs in a project live in the World
(instance of PasteUpMorph)
Worlds have a Canvas that handles display of all
morphs
The World contains one or more Hands (cursor)

Hands interpret user events and pass them on to
morphs (e.g., event loop)

Hands also deal with generation of menus as needed

The World sends step messages at regular
Intervals to morphs to allow updating over time

12/4/02 Copyright 2002, Mark Guzdial 78

Instance Variables and
Properties

bounds: Rectangle defining shape of the
morph. Change it resize or move.

owner: Containing morph.

submorphs: Contained morphs
(addMorph: to change)

color

name
Well, not actually...

12/4/02 Copyright 2002, Mark Guzdial

79

The Morph annex: extension

MorphExtension knows
balloonText, balloonTextSelector
visible
locked: Locked morphs can't be selected
(lock and unlock)

sticky: Sticky morphs can't be moved
(toggleStickiness)

otherProperties: A Dictionary to store more

12/4/02 Copyright 2002, Mark Guzdial 80

Morphic Events

When the Hand Morph detects an event:
Create a MorphicEvent
Can't poll it, but can ask it redButtonPressed

Appropriate MorphicEvent is passed to object
under the Hand by sending the corresponding
message

12/4/02 Copyright 2002, Mark Guzdial 81

Handling Morphic Events

To handle mouse down:

Have a met
iInputs Morp

Have a met

nod handlesMouseDown which
nicevent and returns true

nod named mouseDown: which

takes a MorphicEvent and processes it

MouseUp/MouseQOver
handlesMouseUp:/mouseUp:
handlesMouseOver:/mouseOver:

12/4/02

Copyright 2002, Mark Guzdial

More Event Handling

MouseEnter/MouselLeave
handlesMouseQOver: returns true
mouseEnter:/mouselLeave:

MouseMove (within the morph)
handlesMouseDown:
mouseMove:

Keystrokes
Return true for hasFocus
Accept events in keyStroke:

keyboardFocusChange: will tell you of change
12/4/02 Copyright 2002, Mark Guzdial

83

Animation

Morphic interfaces are designed to
animate

step is sent to all morphs

stepTime is interval for step (number in
milliseconds)

12/4/02 Copyright 2002, Mark Guzdial

84

Custom Menus in Morphic

addCustomMenultems: aCustomMenu
hand: aHandMorph

Called when red-halo (menu halo) or control-
click menu is requested

You can add with add:action: or others

First, do super addCustomMenultems:
aCustomMenu hand: aHandMorph

12/4/02 Copyright 2002, Mark Guzdial 85

Falling Object in Morphic

FickButtonMorph

ball

addCustormMenulterms:hand:

ball:

kick .

0 use Do - FallinglmageMarph

setlGravity gravity
velocity
gravity
gqrawvity:
kick
step
velacity
velocity:

12/4/02 Copyright 2002, Mark Guzdial

86

Subclassing

(Could use SimpleButtonMorph, but too

easy)

ImageMorph subclass: #FallinglmageMorph
instanceVariableNames: 'velocity gravity '
classVariableNames: "
poolDictionaries: "
category: 'Morphic-Demo’

RectangleMorph subclass: #KickButtonMorph
instanceVariableNames: 'ball ’
classVariableNamesa: "
poolDictionaries: "
category: 'Morphic-Demo'

12/4/02 Copyright 2002, Mark Guzdial

Making the Falling Object fall

step

velocity := velocity + gravity. "Increase velocity
by gravitational constant"

self bounds: (self bounds translateBy:

(0@(velocity))).
stepTime

"Amount of time in milliseconds between steps”
A1000

12/4/02 Copyright 2002, Mark Guzdial 88

Kicking the object

kick
velocity := 0. "Set velocity to zero”

self bounds: (self bounds translateBy:
(0@(100 negated))).

12/4/02 Copyright 2002, Mark Guzdial

89

Initializing the Falling Object

initialize
super initialize. "Do normal image.”
velocity := 0. "Start out not falling.”
gravity := 1. "Acceleration due to gravity."

12/4/02 Copyright 2002, Mark Guzdial 90

Implementing the Kicker

handlesMouseDown: evt
"Yes, handle mouse down"
Mrue

mouseDown: evt
self kick.

kick
ball kick.

12/4/02 Copyright 2002, Mark Guzdial

91

Initialize to make it Button-ish

initialize
| myLabel |
super initialize. "It's a normal rectangle plus..."

myLabel := StringMorph new initialize.
myLabel contents: 'KickTheBall'.

self extent: (myLabel extent). "Make the rectangle big
enough for the label"
self addMorph: myLabel.

self center: (Sensor mousePoint). "Put it wherever the

mouse is."
12/4/02 Copyright 2002, Mark Guzdial

92

Allowing changing gravity

addCustomMenultems: aCustomMenu hand:
aHandMorph

super addCustomMenultems: aCustomMenu hand:
aHandMorph. "Do normal stuff"

aCustomMenu add: 'set gravity' action: #setGravity.
setGravity

"Set the gravity of the ball”

| newGravity |

newGravity := FilllnTheBlank request: 'New gravity'
initialAnswer: ball gravity printString.

ball gravity: (hewGravity asNumber).
12/4/02 Copyright 2002, Mark Guzdial 93

Running the Simulation

aBall := FallinglmageMorph new initialize.
aBall newForm: (Form fromUser).
aKicker := KickButtonMorph new initialize.
aKicker ball: aBall.

aBall openinWorld.

aKicker openinWorld.

12/4/02 Copyright 2002, Mark Guzdial

94

Morphic vs. MVC

MVC (world-view, not paradigm)

|s faster than Morphic

Is less elegant

Doesn’t support multimedia like Morphic
Morphic

|s slower

Is better looking, more flexible, more
powerful

Can do multimedia

12/4/02 Copyright 2002, Mark Guzdial

95

Can we do MVC (paradigm) in
Morphic?

In terms of changed-update and
dependencies, SURE!

We can't really do controllers in Morphic
They're built-in to the World

But most Morphic interfaces either:
Combine model and view
Or use step to poll the model

12/4/02 Copyright 2002, Mark Guzdial 96

